Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nicotine Tob Res ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195240

RESUMO

INTRODUCTION: Many studies have found sex differences in alterations of brain function in cigarette smoking adults from the perspective of functional activity or connectivity. However, no studies have systematically found different alteration patterns in brain functional topology of cigarette smoking men and women from three perspectives: nodal and network efficiency, and modular connections. METHODS: Fifty-six tobacco use disorder (TUD) participants (25 women) and 66 non-TUD participants (28 women) underwent a resting-state functional magnetic resonance imaging scan. The whole-brain functional networks were constructed and a two-way analysis of covariance with false discovery rate correction (q < 0.05) were performed to investigate whether men and women TUD participants had different alterations in the topological features at global, modular and nodal levels. RESULTS: Compared to non-TUD participants, men but not women TUD participants showed significantly lower global efficiency (lower inter-modular connections between the visual and executive control, between the visual and subcortical modules did not pass the correction) and significantly lower nodal global efficiency in the right superior occipital gyrus, bilateral fusiform gyrus, the right pallidum, right putamen, the bilateral paracentral lobule, the postcentral gyrus, and lower nodal local efficiency in the left paracentral lobule. CONCLUSIONS: Men and women TUD participants have different topological properties of brain functional network, which may contribute to our understanding of neural mechanisms underlying sex differences in TUD. IMPLICATIONS: Compared to non-TUD participants, we found men but not women TUD participants with significantly lower network metrics at global, modular and nodal level, which could improve our understanding of neural mechanisms underlying sex differences in TUD and lay a solid foundation for future sex-based TUD prevention and treatment.

2.
Front Neurosci ; 17: 1270014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965221

RESUMO

Background: Many reports have focused on cigarette smoking and internet gaming disorder (IGD), with widespread alterations of resting-state functional connectivity (rsFC) in the reward and memory circuits, respectively. Epidemiological studies have also shown high comorbidity of cigarette smoking and IGD. However, the underlying mechanisms are still unknown. Therefore, this study investigates the comorbidity and interaction effects between smoking and IGD from the rsFC perspective. Methods: Resting-state functional magnetic imaging data were collected from 60 healthy controls (HC), 46 smokers, 38 IGD individuals, and 34 IGD comorbid with smoking (IGDsm) participants. Voxel-wise rsFC maps were calculated for all subjects with the ventral tegmental area, rostral hippocampus, and caudal hippocampus as regions of interest, respectively. Results: Significant interaction effects between smoking and IGD were mainly involved in the reward and memory circuits; that is, the rsFC between the ventral tegmental area and right nucleus accumbens, between the rostral hippocampus and bilateral nucleus accumbens, sensorimotor areas, and left middle temporal gyrus. Specifically, in these circuits, smokers showed decreased rsFC compared to the HC group, while IGDsm showed increased rsFC compared to smokers and IGD individuals. The IGDsm and HC groups showed no significant difference. The altered rsFC also correlated with clinical measures. Conclusion: These findings indicate that lower rsFC in smokers or IGD individuals increases under the effect of another type of addiction, such as smoking and IGD, but only increases to the normal state, which might explain the comorbidity and interaction between smoking and IGD from the perspective of functional circuits.

3.
Brain Imaging Behav ; 16(5): 2011-2020, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36018530

RESUMO

Many reports indicated that cigarette smoking was associated with internet gaming disorder (IGD). However, the underlying mechanism of comorbidity between smoking and IGD and whether they had interaction effects on topological organization of brain functional network are still unknown. Therefore, we investigated the interaction between smoking and IGD in resting-state brain functional networks for 60 healthy controls, 46 smokers, 38 IGD individuals and 34 IGD comorbid with smoking participants. The modular structures of functional networks were explored and participation coefficient (Pc) was used to characterize the importance of each brain region in the communication between modules. Significant main effect of IGD was found in the left superior frontal gyrus, bilateral medial part of superior frontal gyrus and bilateral posterior cingulate gyrus with lower Pc in IGD group than in non-IGD group. Significant interaction effects between smoking and IGD were found in the left posterior orbital gyrus, right lateral orbital gyrus, left supramarginal gyrus, left middle temporal gyrus and left inferior temporal gyrus. The interaction in these brain regions was characterized by no significant difference or significantly decreased Pc in smokers or IGD individuals while significantly increased Pc in IGD comorbid with smoking group under the influence of IGD or smoking. Our findings provide valuable information underlying the neurophysiological mechanisms of smoking and IGD, and also offer a potential target for future clinical treatment of smoking and IGD comorbidity.


Assuntos
Comportamento Aditivo , Fumar Cigarros , Jogos de Vídeo , Humanos , Transtorno de Adição à Internet , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Internet
4.
Front Psychiatry ; 13: 874893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546937

RESUMO

Biological sex may play a large role in cigarette use and cessation outcomes and neuroimaging studies have demonstrated that cigarette smoking is associated with sex-related differences in brain structure and function. However, less is known about sex-specific alterations in spontaneous brain activity in cigarette smokers. In this study, we investigated the sex-related effects of cigarette smoking on local spontaneous brain activity using regional homogeneity (ReHo) based on resting-state fMRI. Fifty-six smokers (24 females) and sixty-three (25 females) healthy non-smoking controls were recruited. Whole-brain voxelwise 2-way analysis of covariance of ReHo was performed to detect brain regions with sex-dependent alterations on the spontaneous brain activity. Compared to non-smokers, smokers exhibited significant ReHo differences in several brain regions, including the right medial orbitofrontal cortex extended to the ventral striatum/amygdala/parahippocampus, left precuneus, and bilateral cerebellum crus. Smoking and sex interaction analysis revealed that male smokers showed significantly lower ReHo in the right ventral striatum, left cerebellum crus1, and left fusiform gyrus compared to male non-smokers, whereas there are no significant differences between female smokers and non-smokers. Furthermore, the ReHo within the left cerebellum crus1 was negatively correlated with craving scores in male smokers but not in female smokers. Such sex-dependent differences in spontaneous brain activity lays a foundation for further understanding the neural pathophysiology of sex-specific effects of nicotine addiction and promoting more effective health management of quitting smoking.

5.
Brain Imaging Behav ; 15(1): 1-13, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31898088

RESUMO

Recent studies have demonstrated sex-specific differences in etiology, course and brain dysfunction that are associated with cigarette smoking. However, little is known about sex-specific differences in subcortical structure and function. In this study, structural and resting-state functional magnetic resonance imaging (fMRI) data were collected from 60 cigarette smokers (25 females) and 67 nonsmokers (28 females). The structural MRI was applied to identify deficits in sex-specific subcortical volume. Using resting-state fMRI, sex-related alterations in resting-state functional connectivity (rsFC) were investigated in subcortical nuclei with volume deficits as seed regions. Compared to nonsmokers, male but not female smokers demonstrated a significantly smaller volume in the left caudate, while female but not male smokers showed a smaller volume in the right amygdala. Resting-state FC analysis revealed that male but not female smokers had increased rsFC between the left caudate and the left prefrontal cortex but decreased rsFC within the bilateral caudate and between the right amygdala and right orbitofrontal cortex (OFC). Furthermore, the right amygdala volume was negatively correlated with the impulsivity score in female but not male smokers. The rsFC of the right amygdala-OFC circuit was negatively associated with the craving score in male but not female smokers. These findings indicate that cigarette smoking may have differential effects on the caudate and amygdala volumes as well as rsFC between men and women, contributing to our knowledge of sex-specific effects of nicotine addiction. Such sex-specific differences in subcortical structure and function may provide a methodological framework for the development of sex-specific relapse prevention therapies.


Assuntos
Fumar Cigarros , Tabagismo , Tonsila do Cerebelo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tabagismo/diagnóstico por imagem
6.
Front Psychiatry ; 11: 586114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343420

RESUMO

Converging lines of evidence indicates that smoking and internet gaming disorder (IGD) affect spontaneous brain activity, respectively. However, little is known about whether these two factors work together on the human brain. In this study, we investigated the interaction between smoking and IGD on local spontaneous brain activity using amplitude of low-frequency fluctuation (ALFF) based on resting-state fMRI (rs-fMRI). Forty-six cigarette smokers, 38 IGD individuals, 34 participants with both IGD and cigarette smoking (IGD-Smoking), and 60 healthy individuals involved in the study. Voxel-wise analysis of covariance of ALFF revealed that there were significant interactions between IGD by smoking in the right medial pre-frontal cortex (MPFC)/ventral striatum, bilateral cerebellar, and visual-related regions as well as the left temporal gyrus. In the right MPFC/ventral striatum and left temporal gyrus, ALFF in smoking group was significantly higher than healthy group while there were no significant ALFF differences between IGD-Smoking group and IGD group. While in the bilateral cerebellar and visual-related regions, ALFF in the smoking group was significantly lower than healthy group while ALFF in IGD-Smoking group did not show significant difference with IGD group. In addition, in the smoking group, ALFF of the right MPFC/ventral striatum was associated positively with anxiety and depression scores while the ALFF value in the smoking group had a trend toward negative correlation with SDS scores in the bilateral cerebellar and visual-related regions. The ALFF value in the smoking group was associated positively with anxiety score in the left temporal gyrus. These findings indicate that smoking and IGD interacted with each other in the human brain. Our results, in terms of spontaneous brain activity, may imply the fact that IGD people are more tended to get smoking. Moreover, it is possible to predict that smokers may be more easily to get internet addiction than healthy people.

7.
Neuroimage ; 210: 116588, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004718

RESUMO

An enriched environment (EE) provides multi-dimensional stimuli to the brain. EE exposure for days to months induces functional and structural neuroplasticity. In this study, manganese-enhanced magnetic resonance imaging (MEMRI) was used to map the accumulative whole-brain activities associated with a 7-day EE exposure in freely-moving adult male mice, followed by c-Fos immunochemical assessments. Relative to the mice residing in a standard environment (SE), the mice subjected to EE treatment had significantly enhanced regional MEMRI signal intensities in the prefrontal cortex, somatosensory cortices, basal ganglia, amygdala, motor thalamus, lateral hypothalamus, ventral hippocampus and midbrain dopaminergic areas at the end of the 7-day exposure, likely attributing to enhanced Mn2+ uptake/transport associated with brain activities at both the regional and macroscale network levels. Some of, but not all, the brain regions in the EE-treated mice showing enhanced MEMRI signal intensity had accompanying increases in c-Fos expression. The EE-treated mice were also found to have significantly increased overall amount of food consumption, decreased body weight gain and upregulated tyrosine hydroxylase (TH) expression in the midbrain dopaminergic areas. Taken together, these results demonstrated that the 7-day EE exposure was associated with elevated cumulative activities in the nigrostriatal, mesolimbic and corticostriatal circuits underpinning reward, motivation, cognition, motor control and appetite regulation. Such accumulative activities might have served as the substrate of EE-related neuroplasticity and the beneficial effects of EE treatment on neurological/psychiatric conditions including drug addiction, Parkinson's disease and eating disorder.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cloretos/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/administração & dosagem , Neuroimagem/métodos , Animais , Encéfalo/metabolismo , Meio Ambiente , Aumento da Imagem , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo
8.
Front Hum Neurosci ; 13: 265, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417384

RESUMO

Insula plays an essential role in maintaining the addiction to cigarette smoking and smoking-related alterations on the insular volume and density have been reported in smokers. However, less is known about the effects of chronic cigarette smoking on the insular cortical thickness. In this study, we explored the region-specific changes of insular cortical thickness in heavy smokers and their relations with smoking-related variables. 37 heavy smokers (29 males, mean age 47.19 ± 7.22 years) and 37 non-smoking healthy controls (29 males, mean age 46.95 ± 8.45 years) participated in the study. Subregional insular cortical thickness was evaluated and compared between the two groups. Correlation analysis was performed to investigate relationships between the insular cortical thickness and clinical characteristics in heavy smokers. There was no statistical difference on the cortical thickness in the left insula (p = 0.536) between the two groups while heavy smokers had a slightly thinner cortical thickness in the right insula (p = 0.048). In addition, heavy smokers showed a greater cortical thinning in the anterior (p = 0.0084) and superior (p = 0.0054) segment of the circular sulcus of the right insula as well as the inferior (p = 0.012) segment of the circular sulcus of the left insula. Moreover, the cortical thickness of the superior segment of the circular sulcus of the left insula was correlated negatively with nicotine severity (r = -0.423; p = 0.009) and the longer cigarette exposure was associated with the cortical thinning in the long insular gyrus and central sulcus of the right insula (r = -0.475; p = 0.003). Our findings indicate that chronic cigarette use is associated with region-specific insular thinning, which has the potential to improve our understanding of the specific roles of insular subregions in nicotine addiction.

9.
Radiology ; 289(2): 487-496, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30015589

RESUMO

Purpose To study deep gray matter susceptibility in multiple sclerosis (MS) by using quantitative susceptibility mapping (QSM) and to assess the relationship between susceptibility and clinical disability. Materials and Methods For this prospective study between March 2009 and November 2013, 600 participants with MS (452 with relapsing-remitting MS and 148 with secondary progressive MS) and 250 age- and sex-matched healthy control participants were imaged with 3.0-T MRI to measure magnetic susceptibility. Deep gray matter susceptibility (in parts per billion) was analyzed by using region of interest and voxelwise methods. QSM and MRI volumetric differences between study groups and associations with clinical outcomes were assessed. Analysis of covariance, multivariable linear regression, and voxelwise analyses, controlling for age and sex, were used to compare study groups and to explore associations between MRI and clinical outcomes. Results Compared with control participants, participants with MS presented with lower thalamic susceptibility (-7.5 ppb vs -1.1 ppb; P < .001) and higher susceptibility of basal ganglia (62 ppb vs 54.8 ppb; P < .001). Lower thalamic susceptibility was associated with longer disease duration (ß = -0.42; P = .002), higher degree of disability (ß = -0.64; P = .03), and secondary-progressive course (ß = -4.3; P = .009). Higher susceptibility of the globus pallidus was associated with higher disability (ß = 2; P = .03). After correcting for each individual structural volume in voxelwise analysis, lower thalamic susceptibility and higher susceptibility of the globus pallidus remained associated with clinical disability (P < .05). Conclusion Quantitative susceptibility mapping (QSM) suggests that altered deep gray matter iron is associated with the evolution of multiple sclerosis (MS) and on disability accrual, independent of tissue atrophy. © RSNA, 2018 Online supplemental material is available for this article.


Assuntos
Encéfalo/metabolismo , Pessoas com Deficiência/estatística & dados numéricos , Interpretação de Imagem Assistida por Computador/métodos , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Estudos de Avaliação como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
10.
Neuroimage Clin ; 17: 530-540, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29201641

RESUMO

Brain iron homeostasis is known to be disturbed in multiple sclerosis (MS), yet little is known about the association of common gene variants linked to iron regulation and pathological tissue changes in the brain. In this study, we investigated the association of genetic determinants linked to iron regulation with deep gray matter (GM) magnetic susceptibility in both healthy controls (HC) and MS patients. Four hundred (400) patients with MS and 150 age- and sex-matched HCs were enrolled and obtained 3 T MRI examination. Three (3) single nucleotide polymorphisms (SNPs) associated with iron regulation were genotyped: two SNPs in the human hereditary hemochromatosis protein gene HFE: rs1800562 (C282Y mutation) and rs1799945 (H63D mutation), as well as the rs1049296 SNP in the transferrin gene (C2 mutation). The effects of disease and genetic status were studied using quantitative susceptibility mapping (QSM) voxel-based analysis (VBA) and region-of-interest (ROI) analysis of the deep GM. The general linear model framework was used to compare groups. Analyses were corrected for age and sex, and adjusted for false discovery rate. We found moderate increases in susceptibility in the right putamen of participants with the C282Y (+ 6.1 ppb) and H63D (+ 6.9 ppb) gene variants vs. non-carriers, as well as a decrease in thalamic susceptibility of progressive MS patients with the C282Y mutation (left: - 5.3 ppb, right: - 6.7 ppb, p < 0.05). Female MS patients had lower susceptibility in the caudate (- 6.0 ppb) and putamen (left: - 3.9 ppb, right: - 4.6 ppb) than men, but only when they had a wild-type allele (p < 0.05). Iron-gene linked increases in putamen susceptibility (in HC and relapsing remitting MS) and decreases in thalamus susceptibility (in progressive MS), coupled with apparent sex interactions, indicate that brain iron in healthy and disease states may be influenced by genetic factors.


Assuntos
Química Encefálica/genética , Proteína da Hemocromatose/genética , Ferro/metabolismo , Esclerose Múltipla/genética , Transferrina/genética , Adulto , Idoso , Encéfalo/metabolismo , Feminino , Predisposição Genética para Doença/genética , Genótipo , Substância Cinzenta/metabolismo , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Polimorfismo de Nucleotídeo Único
11.
Neuroimage ; 167: 438-452, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29097315

RESUMO

Recent advances in susceptibility MRI have dramatically improved the visualization of deep gray matter brain regions and the quantification of their magnetic properties in vivo, providing a novel tool to study the poorly understood iron homeostasis in the human brain. In this study, we used an advanced combination of the recent quantitative susceptibility mapping technique with dedicated analysis methods to study intra-thalamic tissue alterations in patients with clinically isolated syndrome (CIS) and multiple sclerosis (MS). Thalamic pathology is one of the earliest hallmarks of MS and has been shown to correlate with cognitive dysfunction and fatigue, but the mechanisms underlying the thalamic pathology are poorly understood. We enrolled a total of 120 patients, 40 with CIS, 40 with Relapsing Remitting MS (RRMS), and 40 with Secondary Progressive MS (SPMS). For each of the three patient groups, we recruited 40 controls, group matched for age- and sex (120 total). We acquired quantitative susceptibility maps using a single-echo gradient echo MRI pulse sequence at 3 T. Group differences were studied by voxel-based analysis as well as with a custom thalamus atlas. We used threshold-free cluster enhancement (TFCE) and multiple regression analyses, respectively. We found significantly reduced magnetic susceptibility compared to controls in focal thalamic subregions of patients with RRMS (whole thalamus excluding the pulvinar nucleus) and SPMS (primarily pulvinar nucleus), but not in patients with CIS. Susceptibility reduction was significantly associated with disease duration in the pulvinar, the left lateral nuclear region, and the global thalamus. Susceptibility reduction indicates a decrease in tissue iron concentration suggesting an involvement of chronic microglia activation in the depletion of iron from oligodendrocytes in this central and integrative brain region. Not necessarily specific to MS, inflammation-mediated iron release may lead to a vicious circle that reduces the protection of axons and neuronal repair.


Assuntos
Doenças Desmielinizantes/metabolismo , Inflamação/metabolismo , Ferro/metabolismo , Esclerose Múltipla Crônica Progressiva/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , Oligodendroglia/metabolismo , Tálamo/metabolismo , Adulto , Idoso , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/imunologia , Feminino , Humanos , Inflamação/imunologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/imunologia , Tálamo/diagnóstico por imagem , Fatores de Tempo , Adulto Jovem
12.
Psychopharmacology (Berl) ; 232(14): 2481-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25716308

RESUMO

RATIONALE: Task-state and resting-state functional magnetic resonance imaging (fMRI) studies have revealed different brain responses in chronic cigarette smokers compared with healthy controls. However, little is known about the differences between chronic cigarette smokers and healthy subjects regarding the local synchronization of spontaneous brain activity in the resting state. OBJECTIVES: In this study, we used regional homogeneity (ReHo) analysis based on resting-state fMRI to investigate intrinsic brain activity in heavy smokers. METHODS: Thirty-one heavy smokers and 33 healthy non-smokers were included in this study. ReHo was used to measure spontaneous brain activity, and whole-brain voxel-wise comparisons of ReHo were performed to detect brain regions with altered spontaneous brain activity between groups. RESULTS: Compared with non-smokers, heavy smokers showed decreased ReHo primarily in brain regions associated with the default-mode, frontoparietal attention, and inhibitory control networks; heavy smokers showed increased ReHo predominately in regions related to motor planning. CONCLUSIONS: Our results suggest that heavy smokers may have altered spontaneous brain activity in some brain regions that are associated with higher cognitive networks. Moreover, our study improves the understanding of the effects of chronic cigarette smoking on spontaneous brain activity and the pathophysiological mechanisms of nicotine dependence.


Assuntos
Encéfalo/efeitos dos fármacos , Fumar/fisiopatologia , Adulto , Idade de Início , Atenção/efeitos dos fármacos , Encéfalo/fisiopatologia , Cognição/efeitos dos fármacos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Inibição Psicológica , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/efeitos dos fármacos , Descanso , Tabagismo/fisiopatologia , Adulto Jovem
13.
Addict Biol ; 20(4): 809-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24962385

RESUMO

Recent neuroimaging studies have demonstrated that cigarette smoking is associated with changed brain structure and function. However, little is known about alterations of the topological organization of brain functional networks in heavy smokers. Thirty-one heavy smokers and 33 non-smokers underwent a resting-state functional magnetic resonance imaging scan. The whole-brain functional networks were constructed by thresholding the correlation matrices of 90 brain regions and their topological properties were analyzed using graph network analysis. Non-parametric permutation tests were performed to investigate group differences in network topological measures and multiple regression analysis was conducted to determine the relationships between the network metrics and smoking-related variables. Both heavy smokers and non-smokers exhibited small-world architecture in their brain functional networks. Compared with non-smokers, however, heavy smokers showed altered topological measurements characterized by lower global efficiency, higher local efficiency and clustering coefficients and greater path length. Furthermore, heavy smokers demonstrated decreased nodal global efficiency mainly in brain regions within the default mode network, whereas increased nodal local efficiency predominated in the visual-related regions. In addition, heavy smokers exhibited an association between the altered network metrics and the duration of cigarette use or the severity of nicotine dependence. Our results suggest that heavy smokers may have less efficient network architecture in the brain, and chronic cigarette smoking is associated with disruptions in the topological organization of brain networks. Our findings may further the understanding of the effects of chronic cigarette smoking on the brain and the pathophysiological mechanisms underlying nicotine dependence.


Assuntos
Encefalopatias/fisiopatologia , Rede Nervosa/fisiopatologia , Fumar/fisiopatologia , Adulto , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tabagismo/fisiopatologia
14.
Drug Alcohol Depend ; 129(1-2): 82-7, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23062873

RESUMO

BACKGROUND: Abnormal macrostructural brain abnormalities in both gray matter and white matter have been reported in cigarette smokers. However, less is known about white matter microstructure in heavy cigarette smokers. In this study, we used diffusion tensor imaging (DTI) to investigate the integrity of the white matter microstructure in heavy smokers. METHODS: Thirty-four heavy smokers and 34 non-smokers participated in this study. Whole brain analysis of fractional anisotropy (FA) was performed using tract-based spatial statistics (TBSS) to detect abnormal white matter regions between groups. Volume-of-interest (VOI) analysis was used to investigate changes in diffusivity indices in the regions showing FA abnormalities. Multiple regression analysis was applied to assess the relationships between diffusion indices and smoking-related variables in heavy smokers. RESULTS: Compared with non-smokers, heavy smokers had lower FA in the left anterior (i.e., the genu and rostral body) corpus callosum while exhibiting no areas of higher FA. In the affected region, FA reduction was accompanied by a significantly decreased axial diffusivity and increased radial diffusivity, which suggests that axonal damage and disrupted myelin integrity may be associated with the degraded white matter integrity in heavy smokers. Moreover, significant positive correlations were found between both radial diffusivity and mean diffusivity and the duration of regular smoking. CONCLUSIONS: Our findings suggest that heavy smokers demonstrate abnormal integrity of the white matter microstructure in the anterior corpus callosum, which is related to the duration of regular smoking. In addition, our study may increase the understanding of the neurobiological basis of chronic cigarette smoking.


Assuntos
Corpo Caloso/patologia , Fumar/patologia , Adulto , Anisotropia , Interpretação Estatística de Dados , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA